ElectroMagnetic Tensor
DEFINITION
PROPERTIES
- Antisymmetric
⇒ - Even though Differential, stilla Tensor CAUSE Lorentz Transformation are Linear!
APPLICATIONS
APPLICATIONS - LORENTZ-TRANSFORMATION
↑↑powerful CAUSE u can choose a simpler IRF to resolve the problem
In Restricted Lorentz Transformation
= = → Simplify → = = = → $$\tilde{E}x = \tilde{F}\cdot c=E_x$$ = #TODO
The final result is: $$\begin{cases} \tilde{E}_x=E_x\ \tilde{E}_y = \gamma\cdot(E_y-v\cdot B_z)\ \tilde{E}_z = \gamma\cdot(E_z+v\cdot B_z)\end{cases} & \begin{cases} \tilde{B}_x=B_x\ \tilde{B}_y = \gamma\cdot(B_y+ \frac{v}{c^2}\cdot E_z)\ \tilde{B}_z = \gamma\cdot (B_z-\frac{v}{c^2}\cdot B_z)\end{cases}$$
Notice Electric Field
"RAZIO"
"RAZIO" - EM TENSOR TRANSFORMATION
HEADS-UP 1
#h-gray *Contravariant version $$F^{\mu,\nu}= \begin{bmatrix} 0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c}\ \frac{E_x}{c} & 0 & -B_z & B_y\ \frac{E_y}{c} & B_z & 0 & -B_x\ \frac{E_z}{c} & -B_y & B_x & 0\end{bmatrix}$$
<% tp.file.cursor(21) %>