Charge Conservation Law

⬅️Back
#h-a #TODO


DEFINITION

DEFINITION - CLASSIC

Mass Conservation Law applied to Flux #ASK

Charge Conservation Law

S(j+ϵ0Et)dS=0\nabla\cdot\vec{j}=-\partial_t \rho$$ #ASK ==$\vec{j} +\epsilon_0\cdot \frac{\partial\vec{E}}{\partial t}$== \[#h-G *$\frac{A}{m^2}$* ]: *Generalized* Current Density: - $\vec{j}$ = Current Density caused by moving charges - $\epsilon_0\cdot \frac{\partial\vec{E}}{\partial t}$ = Drift Curret Density caused by static charges

DEFINITION - SPECIAL RELATIVITY

IRF

Charge Conservation Law - Special Relativity

xμjμ=0

jμ [#h-G $ ]: Four-Current


"RAZIO"

"RAZIO" - CLASSIC PHYSICS

  1. Take a closed surface S. Inside it, there is a total Charge q (that can be exchange w/ the outside) made of:

Pasted image 20230202155302.png
2. Divide surface S in smaller dS w/ Normal Vector exiting S.
3. Calculate Flux charges going through dS: $$\Phi=\oint_S\vec{j}\cdot\widehat{u}_n\cdot dS= -\frac{dq}{dt} → \oint_S\vec{j}\cdot\widehat{u}_n\cdot dS + \frac{dq}{dt}=0$$Where:
- IF charges are exiting → Flux Φ<0 → ↓q
- IF charges are entering → Flux Φ>0 → ↑q
4. Apply 1° Maxwell Equation to find total Charge qSEdS=qϵ0q=Sϵ0EdS
5. Substitute and resolve → Sju^ndS+ddt(Sϵ0EdS)=0 → $$\oint_S \left(\vec{j} +\epsilon_0\cdot \frac{\partial\vec{E}}{\partial t} \right)\cdot d\vec{S}=0$$

"RAZIO" - SPECIAL RELATIVITY

  1. Classically j = xkjk
  2. We are working w/ Four-Current jμ=[cρj]÷jμ = x0j0+xkjk = #TODO

#h-t LINKED