Euler-Lagrange Equation

⬅️Back
#h-a #TODO


DEFINITION

Alternative to Lagrange Equation WHEN Potential V ⇒ None OR Holonomic Constrain.

Euler-Lagrange Equation

ddtLq˙αLqα=0

qα [#h-G m ]: @Generalized Coordinate α
q˙α [#h-G ms ]: Generalized Velocity

L [#h-G J ]: Lagrangian WHERE IF:

Bead on a wire is rotating (θ=ωt) on a plain. Due to Angular Acceleration → It's being shoot out

> > 1. **Find Constrains** > - $z=0$ > - $\frac{y}{x}=\tan(\theta)=\tan(\omega\cdot t)$ > 2. **Find Degree of Freedom**: > - Radius $r$ > 3. **Write Transformation Equation** → $\begin{cases} x=r\cdot\cos(\theta)=r\cdot\cos(\omega\cdot t)\\ y=r\cdot\sin(\theta)=r\cdot\sin(\omega\cdot t)\end{cases}$ > 4. **$\exists$ Potential $V$?** No CAUSE no other applied Forces → I can write ELE > 5. **Write ELE** > 1. **Find Lagrangian** → $L=K-\cancel{V}$ = $\frac{1}{2}m\cdot(\dot r^2+r^2\cdot\dot\theta^2)$ = $\frac{1}{2}m\cdot(\dot r^2+r^2\cdot\omega^2)$ > 2. ELE $\frac{d}{dt}\frac{\partial L}{\partial\dot{q}_\alpha}- \frac{\partial L}{\partial q_\alpha}=0$ → $m\cdot\ddot r-m\cdot r\cdot \omega^2=0$ → ==$r(t)=A\cdot e^{\omega\cdot t}+B\cdot e^{-\omega\cdot t}$== > > It's a System that depends on "Initial Conitions"


#ASK

generic Solution
αVγ,αη¨α+Vγ,αηα=0


"RAZIO"

  1. Take Lagrange Equation $$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}\alpha}- \frac{\partial T}{\partial q\alpha}=Q_\alpha$$
  2. IF I can write Applied Forces through Potential Energy VFi=iV Generalized Component of Applied Force Qα = = Vqα
  3. Substitute it in Lagrange EquationddtTq˙αTqα=Vqαddtq˙α(TV)qα(TV)=0
  4. Knowing Lagrangian L=TVddtLq˙αLqα=0

#h-t LINKED