%Formulary
PROBABILITY
DEFINITION
F | Name | Formula |
---|---|---|
Classic Probability | $$P=\frac{#A}{#S}$$ |
RELATIONSHIP
F | Name | Formula |
---|---|---|
Conditioned Probability | $$P(A\vert B)=P_B(A)= \frac{P(A\cap B)}{P(B)}$$ | |
Bayer Probability Formula | $$P(A\vert B)= P(B\vert A)\cdot \frac{P(A)}{P(B)}$$ | |
Independent Event | $$P(A\vert B)=P(A) \Leftrightarrow \frac{P(A\cap B)}{P(B)}=P(A)$$ | |
Total Probability Formula | $$P(A)=\sum_{i=1}^{N}P(A\vert B_i)\cdot P(B_i)$$ | |
Composite Probability Formula | $$P\left(\bigcap^N_{i=1} R_i\right)=\left[\prod^N_{q=2} P\left(R_q\vert\bigcap_{m=1}^{q-1}R_m\right)\right]\cdot P(R_1)$$ | |
@De Morgan Rules | $$\left(\bigcap_i^{n \vert \infty}A_i\right)^C=\bigcup_i^{n \vert \infty} A_i^C$$ $$\left(\bigcup_i^{n \vert \infty}A_i\right)^C=\bigcap_i^{n \vert \infty} A_i^C$$ |
SYSTEM RELIABILITY
F | Name | Formula |
---|---|---|
Parallel Connection | $$P(S)=P\left(\bigcup_i S_i\right)=1-\prod_i(1-P(S_i))$$ | |
Series Connection | $$P(S)=P\left(\bigcap_i S_i\right)=\prod_i P(S_i)$$ |
COMBINATION
PERMUTATION
F | Name | Formula |
---|---|---|
Simple Permutation | $$n!$$ | |
Permutation with Repetition | $$\frac{n!}{\prod x!}$$ |
COMBINATION
F | Name | Formula |
---|---|---|
Simple Combination | $$\left( \begin{array}{cc} n \ k\end{array}\right)$$ |
DISPOSITION
F | Name | Formula |
---|---|---|
Disposition with Repetition | $$n^k$$ | |
Simple Disposition | $$\frac{n!}{(n-k)!}$$ |
RANDOM VARIABLE
DISCRETE RANDOM VARIABLE
F | Name | Formula |
---|---|---|
@Discrete Random Variable | $$P(x_\alpha)= F(x_\alpha)-F(x_{\alpha-1})$$ |
BERNULLI RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Expected Value | $$E(X)=p$$ | |
@Variance | $$Var(X)= p-p^2$$ |
BINOMIAL RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$P(X=\alpha)=\left(\begin{array}{cc} n\ k \end{array}\right)\cdot p^k\cdot(1-p)^{n-k}$$ | |
Expected Value | $$E(X)=n\cdot p$$ | |
@Variance | $$Var(X)= n\cdot(p-p^2)$$ |
GEOMETRIC RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$P(X=\alpha)=(1-p)^{\alpha-1}\cdot p$$ | |
Expected Value | $$E(X)=\frac{1}{p}$$ | |
@Variance | $$Var(X)= \frac{1-p}{p^2}$$ |
POISSON RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$P(X=\alpha)=\frac{\lambda^\alpha}{\alpha!}\cdot e^{-\lambda}$$ | |
Expected Value | $$E(X)=\lambda$$ | |
@Variance | $$Var(X)=\lambda$$ |
INDEX
F | Name | Formula |
---|---|---|
⭐ | Expected Value | $$\mu_x=E(X)=\begin{cases}\sum_{S_X} x_k\cdot p(x_k) &\text{ IF Discrete}\ \int_{S_X} x_k\cdot f(x_k) &\text{ IF Continuous}\end{cases}$$ |
Covariance | $$Cov(X_1,\dots X_n)=\sigma(X_1,\dots X_n)=\sigma_{X_1,\dots X_n}=E\left(\left[\prod_i X_i-\mu_{X_i} \right]^2\right)=E\left(\prod_i X_i\right)-\prod_i \mu_{X_i}$$ $$Cov(X,Y)=\begin{cases} \sum_{x_i}\sum_{y_j} (x_i-\mu_x)\cdot(y_j-\mu_y)\cdot \mathbb{P}(X,Y)\cdot(x_i,y_j) &\text{ IF Discrete}\ \int_{S_X}\int_{S_Y} (x-\mu_x)\cdot(y-\mu_y)\cdot f(X,Y)\cdot(x,y)\cdot dx\cdot dy &\text{ IF Continuous}\end{cases} $$ | |
@Variance | $$\sigma_X^2=Var(X)=E([X-\mu_x]^2)=E(X^2)-\mu_x^2=\begin{cases} \sum_{S_X} (x_k-\mu_X)^2\cdot p(x_k) &\text{ IF Discrete}\ \int_{S_X} (x_k-\mu_X)^2\cdot f(x_k) &\text{ IF Continuous}\end{cases}$$ | |
⭐ | Standard Deviation | $$\sigma_X=\sqrt{Var(X)}$$ |
RANDOM VARIABLE VECTOR
F | Name | Formula |
---|---|---|
⭐ | Linear Correlation Index | $$\rho(X,Y)= \frac{Cov(X,Y)}{\sigma_X\cdot\sigma_Y} = E\left( \frac{X-\mu_x}{\sigma_X} \cdot \frac{Y-\mu_Y}{\sigma_Y}\right)$$ |
CARDINALITY
F | Name | Formula |
---|---|---|
$$#(A\cup B)=#A+#B-#(A\cap B)$$ | ||
$$#\left(\bigcup_i^n A_i\right)=\sum_i #A_i-\sum_i\sum_j#(A_i\cap A_j)+#\bigcap_i^n A_i$$ |
RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Survival Function | $$R_X(x)=1-F_X(x)$$ |
PASCAL RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$P(X=\alpha)=\left(\begin{array}{cc} \alpha-1\ \beta\end{array}\right)\cdot p^\beta\cdot(1-p)^{\alpha-\beta}$$ |
HYPERBOLIC RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$P(X=\alpha)= \frac{ \left(\begin{array}{cc} r\ \alpha\end{array}\right) \cdot \left(\begin{array}{cc} b\ n-\alpha\end{array}\right)}{\left(\begin{array}{cc} N\ n\end{array}\right)}$$ | |
Expected Value | $$E(X)=n\cdot \frac{r}{N}$$ | |
@Variance | $$Var(X)= E(X)\cdot\left(1- \frac{r}{N}\right)\cdot \frac{N-n}{N-1}$$ |
CONTINUOUS RANDOM VARIABLE
F | Name | Formula |
---|---|---|
@Continuous Random Variable | $$$$ |
NORMAL RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$P(X=\alpha)= \frac{1}{\sqrt{2\pi}\cdot\sigma}\cdot e^{- \frac{1}{2}\cdot(\frac{x-\mu}{\sigma})^2}$$ | |
Expected Value | $$E(X)=\mu$$ | |
@Variance | $$Var(X)= \sigma^2$$ |
STANDARD NORMAL RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$P(X=\alpha)= \frac{1}{\sqrt{2\pi}}\cdot e^{- \frac{x^2}{2}}$$ | |
Expected Value | $$E(X)=\mu=0$$ | |
@Variance | $$Var(X)= \sigma^2=1$$ |
EXPONENTIAL RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$f_X(\alpha)=\lambda\cdot e^{-\lambda\cdot x}\cdot\mathbb{1}$$ | |
Expected Value | $$E(X)=\frac{1}{\lambda}$$ | |
@Variance | $$Var(X)=\frac{1}{\lambda^2}$$ | |
Distribution Function | $$F_X(x)=\begin{cases} 0 &\text{IF } x<0\ 1-e^{-x\cdot\alpha} &\text{IF } x \geqslant0\end{cases}$$ | |
Hazard Rate | $$\tau(t)=\lambda$$ |
WEIBULL RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$f_X(\alpha)=\lambda\cdot e^{-\lambda\cdot x}\cdot\mathbb{1}$$ | |
Hazard Rate | $$\tau(t)=\frac{b}{a^b}\cdot t^{b-1}$$ |
UNIFORM RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Probability | $$f_X(x)=\begin{cases} \frac{1}{b-a} &\text{IF }a\leqslant x\leqslant b\ 0 &\text{ELSE}\end{cases}$$ | |
Expected Value | $$E(X)=\frac{a+b}{2}$$ | |
@Variance | $$Var(X)=\frac{(b-a)^2}{12}$$ |
INDEX
F | Name | Formula |
---|---|---|
n-th Moment | $$E(X^n)=\begin{cases} \sum_{S_k} x_k^n\cdot p(x_k) &\text{ IF Discrete}\ \int_{S_k} x_k^n\cdot f(x_k) &\text{ IF Continuous}\end{cases}$$ | |
Covariance | $$Cov(X_1,\dots X_n)=E\left(\prod_i X_i\right)-\prod_i \mu_{X_i}=Cov(X,Y)=\begin{cases} \sum_{x_i}\sum_{y_j} (x_i-\mu_x)\cdot(y_j-\mu_y)\cdot \mathbb{P}(X,Y)\cdot(x_i,y_j) &\text{ IF Discrete}\ \int_{S_X}\int_{S_Y} (x-\mu_x)\cdot(y-\mu_y)\cdot f(X,Y)\cdot(x,y)\cdot dx\cdot dy &\text{ IF Continuous}\end{cases}$$ | |
⭐ | @Linear Correlation Index | $$\rho(X,Y)= \frac{Cov(X,Y)}{\sigma_X\cdot\sigma_Y} = E\left( \frac{X-\mu_x}{\sigma_X} \cdot \frac{Y-\mu_Y}{\sigma_Y}\right)$$ |
VECTOR RANDOM VARIABLE
F | Name | Formula |
---|---|---|
Convolution | $$P_Z=P_X ;^*; P_Y=\begin{cases} \sum_{x\epsilon S_X} p_X(x)\cdot p_Y(z-x) &\text{IF Discrete}\ \int_{S_X} f_X(x)\cdot f_Y(z-x)\cdot dx &\text{IF Continuous} \end{cases}$$ |